Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging.
نویسندگان
چکیده
SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O(6)-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells.
منابع مشابه
A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions
Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limi...
متن کاملDevelopment of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion proteins in a wide range of experimental settings. However, a potential drawback of detection using chemical probes is the fluorescence background f...
متن کاملNear-Infrared Fluorescence Imaging of Mammalian Cells and Xenograft Tumors with SNAP-Tag
Fluorescence in the near-infrared (NIR) spectral region is suitable for in vivo imaging due to its reduced background and high penetration capability compared to visible fluorescence. SNAP(f) is a fast-labeling variant of SNAP-tag that reacts with a fluorescent dye-conjugated benzylguanine (BG) substrate, leading to covalent attachment of the fluorescent dye to the SNAP(f). This property makes ...
متن کاملImmobilization of Ferrocene-Modified SNAP-Fusion Proteins
The supramolecular assembly of proteins on surfaces has been investigated via the site-selective incorporation of a supramolecular moiety on proteins. To this end, fluorescent proteins have been site-selectively labeled with ferrocenes, as supramolecular guest moieties, via SNAP-tag technology. The assembly of guest-functionalized SNAP-fusion proteins on cyclodextrin- and cucurbit[7]uril-coate...
متن کاملSnap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells
Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 39 شماره
صفحات -
تاریخ انتشار 2010